Transformation of the Bis(diphenylphosphino)methane Ligand on the $\mathrm{Ru}_{3}(\mathrm{CO})_{9}$ Framework. Synthesis and Characterization of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$, $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, and $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$

Noël Lugan, ${ }^{\text {1a }}$ Jean-Jacques Bonnet, ${ }^{\text {1a }}$ and James A. Ibers* ${ }^{\text {1b }}$
Contribution from the Laboratoire de Chimie de Coordination du CNRS associè à l'Université Paul Sabatier, 31400 Toulouse, France, and the Department of Chemistry, Northwestern University, Evanston, Illinois 60201. Received November 9, 1984

Abstract

Several transformations of the dppm ligand on Ru_{3} clusters have been established (dppm $=$ bis (diphenylphosphino)methane), starting from the parent complex $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{dppm}\right)$, 1. In compound 2, $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}-\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$), the $\mathrm{Ru}_{3}(\mathrm{CO})_{9}$ fragment is bridged by the six-electron tridentate phosphine ligand. In compound 3, $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, the $\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{H}$ fragment is bridged in a bidentate manner by the five-electron phosphine donor. In compound 4, $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}^{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \text {), the } \mathrm{Ru}_{3}(\mathrm{CO})_{10} \text { fragment is bridged in a }}\right.$ bidentate manner by the four-electron phosphine ligand. Thermolysis of 1 at $80^{\circ} \mathrm{C}$ in cyclohexane affords 2 in high yield. Thermolysis of $\mathbf{2}$ in the presence of H_{2} affords $\mathbf{3}$ in high yield. Compound $\mathbf{3}$ can also be produced directly from $\mathbf{1}$ at $90^{\circ} \mathrm{C}$ in toluene. When CO is bubbled through a solution of $\mathbf{2}$ in refluxing cyclohexane, compound 4 is produced in high yield. Compound 4 reacts with H_{2} under reflux in cyclohexane to yield compound 3 . When compound 4 is refluxed in cyclohexane under N_{2}, compound 2 results. The nature of compounds 2,3 , and 4 has been established by spectroscopic means and by X-ray diffraction methods: crystal data, 2, monoclinic, $C_{2 h^{5}}{ }^{5} P 2_{1} / c, Z=4, a=10.689$ (7) $\AA, b=11.936$ (7) $\AA, c=23.281$ (18) $\AA, \beta=90.18$ $(8)^{\circ}\left(t=-85^{\circ} \mathrm{C}\right)$, final $R\left(F^{2}\right)=3.8 \%, \mathrm{NO}=7725, \mathrm{NV}=381 ; 3$, monoclinic, $C_{2 h^{5}}-P 2_{\mathrm{l}} / n, Z=4, a=10.593$ (2) $\AA, b=$ 13.850 (2) $\AA, c=20.720$ (3) $\AA, \beta=94.12(1)^{\circ}\left(t=-155^{\circ} \mathrm{C}\right)$, final $R\left(F^{2}\right)=3.5 \%$, $\mathrm{NO}=7037$, $\mathrm{NV}=384 ; 4$, monoclinic, $C_{2 h}{ }^{5}-P 2_{1} / n, Z=4, a=12.022$ (1) $\AA, b=15.266$ (1) $\AA, c=17.225(2) \AA, \beta=105.56(1)^{\circ}\left(t=-155^{\circ} \mathrm{C}\right)$, final $R\left(F^{2}\right)=$ $3.5 \%, \mathrm{NO}=6755, \mathrm{NV}=400$.

Current interest in transition-metal clusters arises in part from their possible utility in homogeneous catalysis. Perhaps clusters will induce unusual catalytic reactions as a result of cooperative interactions among adjacent metal centers. ${ }^{2}$ But such studies are complicated by the relative ease with which clusters fragment under conditions appropriate for effective catalysis. ${ }^{3}$ Catalytic as well as stoichiometric reactivity of clusters requires coordinative unsaturation; this can be produced by loss of a ligand or by metal-metal bond scission. ${ }^{4}$ Therefore, for effective catalysis, a compromise must be reached between the stability of the cluster framework and the reactivity of the complex. One approach to such a compromise is to use bridging ligands to maintain the integrity of the polymetallic core and to ensure that possible metal-metal bond cleavages be reversible. ${ }^{5}$ Considerable attention has recently been focused on a variety of nonfluxional polydentate phosphines, arsines, ${ }^{6,7}$ and other bridging ligands. ${ }^{8}$
(1) (a) Laboratoire de Chimie de Coordination. (b) Northwestern University.
(2) See for example: (a) Muetterties, E. L. Science (Washington, D.C.) 1977, 196, 839-848. (b) Muetterties, E. L.; Krause, M. J. Angew. Chem., Int. Ed. Engl. 1983, 22, 135-148 and references cited therein.
(3) Chini, P.; Longoni, G.; Albano, V. Adv. Organomet. Chem. 1976, 14, 285-344.
(4) Pittman, C. U., Jr.; Wilemon, G. M.; Wilson, W. D.; Ryan, R. C. Angew. Chem., Int. Ed. Engl. 1980, 19, 478-479.
(5) See for example: (a) Huttner, G.; Schneider, J.; Müller, H.-D.; Mohr, G.; von Seyerl, J.; Wohlfahrt, L. Angew. Chem., Int. Ed. Engl. 1979, 18, 76-77. (b) Carty, A. J.; Maclaughlin, S. A.; Taylor, N. J. J. Organomet. Chem. 1981, 204, C27-C32. (c) Maclaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organometallics 1983, 2, 1194-1 202.
(6) (a) de Boer, J. J.; Van Doorn, J. A.; Masters, C. J. Chem. Soc., Chem. Commun. 1978, 1005-1006. (b) Harding, M. M.; Nicholls, B. S.; Smith, A. K. J. Organomet. Chem. 1982, 226, C17-C20. (c) Bahsoun, A. A.; Osborn, J. A.; Voelker, C.; Bonnet, J.-J.; Lavigne, G. Organometalics 1982, l, 1115-1120.
(7) Lavigne, G.; Bonnet, J.-J.; Inorg. Chem. 1981, 20, 2713-2716.

This strategy has been pursued in our group and has led us to the isolation of trinuclear ruthenium clusters stabilized by edge-bridging bis(diphenylphosphino)methane (dppm) or bis(diphenylarsino)methane (dpam) ligands. ${ }^{7}$ We have shown that these ligands can control the nuclearity of the complexes. For instance, $\mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{~L}_{2}(\mathrm{~L}=\mathrm{dppm}$ or dpam) reacts with molecular oxygen with retention of the trinuclear metal framework to afford the trinuclear μ_{3}-oxo derivative $\mathrm{Ru}_{3}(\mathrm{CO})_{6}\left(\mu_{3}-\mathrm{O}\right) \mathrm{L}_{2}{ }^{9}$ in which L behaves as a $\mu-\eta^{2}$ ligand as in the parent complexes $\mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{~L}_{2}$.

Previously we found that in the presence of H_{2}, the edgebridging ligand in the complexes $\mathrm{Ru}_{3}(\mathrm{CO})_{8} \mathrm{~L}_{2}$ can experience a facile oxidative cleavage to afford, for example, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{XCH}_{2} \mathrm{X}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ ($\mathrm{X}=\mathrm{P}$ or As) bridging ligands as in $\mathrm{Ru}_{3}(\mathrm{CO})_{6}(\mu$ -$\mathrm{H})_{2}\left(\mu_{3}-\eta^{2}-\mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right),{ }^{10} \mathrm{~A}$. These dihydrido species

A

[^0](9) Lavigne, G.; Lugan, N.; Bonnet, J.-J. Nouv. J. Chim. 1981, 5, 423-425.
exhibit interesting catalytic hydrogenation properties and high stability under severe reaction conditions. Apparently there is stabilization of the metal framework by a single ligand in a $\mu_{3}-\eta^{2}$ coordination mode in which two faces of the cluster are capped by X atoms. In order to gain increased understanding of the oxidative cleavage process of the dppm ligand, we have undertaken the present study of the behavior of $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{dppm}\right)$ under typical conditions encountered in catalysis, i.e., in the presence of heat, H_{2}, or CO .

Experimental Section

General Remarks. All reactions at atmospheric pressure were performed under a prepurified dinitrogen atmosphere with the use of standard Schlenck-line techniques. However, since the compounds reported in this paper are not particularly air-sensitive at room temperature, chromatographic separations and recrystallizations were carried out in air. Solvents were purified by standard methods. Bis(diphenylphosphino)methane (dppm) was purchased from Alfa Products and used as received. $\mathrm{Ru}_{3}(\mathrm{CO})_{12}{ }^{11}$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}\right.$-dppm) ${ }^{12}$ were prepared by published procedures.

Microanalyses were performed by Gailbraith Laboratories, Inc., Knoxville, TN. Infrared spectra were recorded on samples in cyclohexane solution on a Perkin-Elmer Model 283 grating spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{31}$ P NMR spectra were obtained on a JEOL JNM-FX 270 FTNMR spectrometer. All 'H NMR chemical shifts are relative to TMS. ${ }^{31} \mathrm{P}$ positive chemical shifts are downfield from $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external reference.

Preparation of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (2). A solution of $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{dppm}\right)$ (1) ($300 \mathrm{mg}, 0.31 \mathrm{mmol}$) in cyclohexane (40 mL) was refluxed $\left(80^{\circ} \mathrm{C}\right)$ under N_{2} for 6 h . The initial light-red solution turned dark red. The solution was cooled, concentrated on a rotary evaporator, and finally chromatographed on silica gel (Merck 60). Elution with a mixture of dichloromethane/hexane ($1 / 10$) gave two bands. The first to elute contained the new compound 2 whereas the second band contained a small amount of unreacted starting material 1. A brown compound stayed on the top of the column and was not further characterized. The first band was evaporated to dryness under vacuum. Recrystallization of the residual red powder from benzene gave parallelepipedic crystals of 2 ($220 \mathrm{mg}, 82 \%$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$: $\mathrm{C}, 39.03 \%$; H, 1.87%. Found: C, 38.99%; H, 1.97%. IR ($\nu(\mathrm{CO})$) 2072 (m), 2038 (s), 2030 (s), 2010 (s), 1990 (m), 1985 (sh), 1967 (w), 1938 (w) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 6.3-7.9(\mathrm{~m}), 6.80(\mathrm{~m}), 6.78(\mathrm{~m}), 6.32$ (m, $14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 4.13\left(\mathrm{AB}(\mathrm{XY})\right.$ pattern, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 117.3\left(\mathrm{~d}, J_{\mathrm{PP}}=85 \mathrm{~Hz}\right.$, bridging P), 2.9 (d, terminal P).

Preparation of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, 3. (a) From $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (2). Hydrogen was bubbled through a solution of $2(200 \mathrm{mg}, 0.23 \mathrm{mmol})$ in refluxing cyclohexane (30 mL). After 90 min , the initially red solution turned yellow. The solution was cooled, concentrated on a rotary evaporator, and next chromatographed on silica gel (Merck 60). Elution with a dichloromethane/hexane mixture ($1 / 5$) afforded 3 as the only detectable product. Recrystallization from pentane at $-30^{\circ} \mathrm{C}$ gave yellow platelets of $3(150$ $\mathrm{mg}, 75 \%$). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$: $\mathrm{C}, 38.84 \% ; \mathrm{H}, 2.10 \%$. Found: C, 38.14%; H, 2.11%. IR ($\nu(\mathrm{CO})$) 2081 (m), 2048 (s), 2028 (s), $2010(\mathrm{~m}), 2000(\mathrm{~m}), 1992(\mathrm{~m}), 1985(\mathrm{~m}), 1980(\mathrm{~m}), 1960(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (toluene- $\left.d_{8}, 253 \mathrm{~K}\right) \delta 7.3-8.0\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.77\left(\mathrm{dd}, \mathrm{CH}_{2}\right.$ (isomer 3b, vide infra)), $3.74\left(\mathrm{AB}(\mathrm{XY})\right.$ pattern, CH_{2} (isomer 3a)), -16.07 (dd, μ-H (isomer 3b)), -16.72 (dd, $\mu-\mathrm{H}$ (isomer 3a)); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $243 \mathrm{~K}) \delta 134.6\left(\mathrm{~d}, J_{\mathrm{PP}}=100 \mathrm{~Hz}, \mu-\mathrm{P}\right.$ (isomer 3 a$)$), $122.4\left(\mathrm{~d}, J_{\mathrm{PP}}=100\right.$ $\mathrm{Hz}, \mu-\mathrm{P}$ (isomer 3b)), 20.4 (d, terminal P (isomer 3b)), 18.9 (d, terminal \mathbf{P} (isomer 3b)).
(b) From $\mathrm{Ru}_{3}(\mathbf{C O})_{10}\left(\mu-\eta^{2}\right.$-dppm) (1). With the same procedure as described above but at $90^{\circ} \mathrm{C}$, in toluene 3 can be prepared directly from 1 with approximately the same yield.

Preparation of $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathbf{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (4). In a typical experiment, CO was bubbled through a solution of $2(200 \mathrm{mg}$, 0.23 mmol) in refluxing cyclohexane (40 mL) for 6 h . The initially dark-red solution gradually turned orange-red. The solution was concentrated and then chromatographed. Elution with a mixture of dichloromethane/hexane ($1 / 9$) afforded two red bands. The first one was the new compound 4 whereas the second was unreacted 2. Recrystalli-
(10) Lavigne, G.; Lugan, N.; Bonnet, J.-J. Organometallics 1982, l, 1040-1050.
(11) Mantovani, A.; Cenini, S. Inorg. Synth. 1972, 16, 47-48.
(12) Bruce, M. I.; Martisons, J. G.; Nicholson, B. K. J. Organomet. Chem. 1983, 247, 321-343.
zation of 4 from a mixture of dichloromethane/pentane at $-30^{\circ} \mathrm{C}$ gave bipyramidal red-orange crystals (125 mg , yield 80% based on 2 consumed). Anal. Caled for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Ru}_{3}$: $\mathrm{C}, 39.15 \% ; \mathrm{H}, 1.81 \%$. Found: C, 39.56\%; H, 2.38\%. IR ($\nu(\mathrm{CO})$), $2090(\mathrm{~m}), 2032(\mathrm{~m}), 2020$ (s), 2008 (s), 1990 (m), $1968(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 6.7-7.6$ ($\mathrm{m}, 14 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{4}$), $3.45\left(\mathrm{AB}\left(\mathrm{X}_{2}\right)\right.$ pattern, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.8$ (s, terminal P).

Conversion of 4 to 2 . A solution of $4(100 \mathrm{mg}, 0.11 \mathrm{mmol})$ in cyclohexane (20 mL) was refluxed under \mathbf{N}_{2}. The reaction was monitored by IR spectroscopy and was found to be complete in 2 h .

Reaction of 4 with H_{2} to yield 3. Compound $4(100 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in cyclohexane (30 mL), and the solution was heated under reflux. Hydrogen was bubbled through the solution. The reaction was monitored by IR spectroscopy ($\nu(\mathrm{CO})$ region) and was complete in 4 h .

Attempted Reaction of 3 with CO. A solution of $\mathbf{3}(100 \mathrm{mg}, 0.12$ mmol) in cyclohexane (40 mL) was placed in an autoclave. The vessel was pressurized to 40 bar with CO and heated to $80^{\circ} \mathrm{C}$. After 18 h at this temperature, the autoclave was cooled and depressurized. The resulting solution was evaporated to dryness in vacuo, and an IR and NMR examination of the residual yellow powder showed only the starting material 3.

Crystallographic Studies. Crystals of 2 were grown from benzene/ hexane ($1 / 9$) by slow evaporation of a solution at room temperature; crystals of $\mathbf{3}$ were obtained through recrystallization from hexane solution at $-30^{\circ} \mathrm{C}$; crystals of 4 were formed from an acetone/ethanol solution (1/3) that was allowed to evaporate slowly at room temperature. Space groups and approximate cell parameters for the three compounds were determined from precession photographs taken at room temperature. Data were collected on a computer-controlled Picker FACS-1 diffractometer at $-155^{\circ} \mathrm{C}$ for compounds 3 and 4 and at $-85^{\circ} \mathrm{C}$ for compound 2. ${ }^{13}$ For each compound, accurate cell constants were obtained by the least-squares refinement of the setting angles of 15 reflections. ${ }^{14}$ Data collection and reduction were carried out as described previously. ${ }^{15}$ Table I presents further crystallographic information.

The positions of the Ru and P atoms in each structure were determined by direct methods (MULTAN). The combination of full-matrix least-squares refinement and difference electron density syntheses was used to locate the remaining non-hydrogen atoms. Atomic scattering factors were taken from the usual tabulations. ${ }^{16}$ Anomalous dispersion terms for the Ru and P atoms were included in $F_{\mathrm{c}} .{ }^{16,17}$ All non-hydrogen atoms were allowed to vibrate anisotropically. The positions of the hydrogen atoms, except the μ-hydrido ligand in 3 whose position was determined from a difference electron density map and was refined, were idealized ($\mathrm{C}-\mathrm{H}=0.95 \AA, B=1.0 \AA^{2}$ greater than the equivalent B of the atom to which it is attached) and held fixed during refinements. The final refinements were carried out on F^{2} and involved all unique data, including those with $F^{2}<0$. The function minimized was $\sum w\left(F_{0}{ }^{2}\right.$ $\left.F_{c}{ }^{2}\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{0}^{2}\right)$. Final atomic parameters for the atoms of 2, 3, and 4 are listed in Tables IIa, IIIa, and IVa, respectively. Tables $\mathrm{IIb}, \mathrm{IIIb}$, and IVb list the hydrogen thermal parameters for all atoms of 2, 3, and 4, respectively. ${ }^{18}$ Structure amplitudes ($10\left|F_{0}\right|$ vs. $10\left|F_{\mathrm{c}}\right|$) for the three structures are available as Tables V, VI, and VII. ${ }^{18}$ A negative entry for $\left|F_{0}\right|$ in these latter tables indicates that $F_{0}{ }^{2}<0$.

Results

Scheme I sketches compounds 1-4. The parent compound 1 may be thought of as a $\mathrm{Ru}_{3}(\mathrm{CO})_{10}$ fragment bridged in a bidentate manner by the four-electron donor dppm. Compound 2, similarly is the $\mathrm{Ru}_{3}(\mathrm{CO})_{9}$ fragment bridged by the six-electron tridentate ligand $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}\left(\mu-\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$. Compound 3 is the $\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{H}$ fragment bridged in a bidentate manner by the five-electron donor ligand $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}\left(\mu-\mathrm{CH}_{2}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$, while compound 4 may be thought of as the $\mathrm{Ru}_{3}(\mathrm{CO})_{10}$ fragment bridged in a bidentate manner by the four-electron donor ligand $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{P}\left(\mu-\mathrm{CH}_{2}\right)\left(\mu-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. In each instance the particular phosphine ligand is derived by various transformations of

[^1]Scheme I

3
the original dppm ligand on the Ru_{3} cluster as described below. But first we describe briefly the structures of 2,3 , and 4.
Description of the Structures. Perspective views of compounds 2,3, and 4 are presented along with labeling schemes in Figures 1, 2, and 3, respectively, while Tables VIII and IX summarize important bond distances and angles.
In compound 2, each Ru atom of the Ru_{3} triangle has two equatorial and one axial CO group. The tridentate phosphine ligand sits upon the $\mathrm{Ru}_{3}(\mathrm{CO})_{9}$ fragment so that atom $\mathrm{Ru}(1)$ is bonded to one P atom, atom $\mathrm{Ru}(2)$ is bonded to the other P atom, and this P atom, along with atom $\mathrm{C}(12)$ of the $\mathrm{C}_{6} \mathrm{H}_{4}$ fragment, completes the coordination about atom $\mathrm{Ru}(3)$. The presence of three $\mathrm{Ru}-\mathrm{Ru}$ single bonds completes the closed-shell electron configuration about each Ru atom.
In compound 3, each Ru atom of the Ru_{3} triangle again has two equatorial and one axial CO group, but in addition there is an H bridge between atoms $\mathrm{Ru}(1)$ and $\mathrm{Ru}(3)$, as deduced from the crystallographic results. As discussed below, this H bridge is fluxional in solution. The bidentate phosphine ligand sits on top of this $\mathrm{Ru}_{3}(\mathrm{CO})_{9} \mathrm{H}$ fragment so that one P atom is bonded to atom $\mathrm{Ru}(1)$ while the other P atom bridges atoms $\mathrm{Ru}(2)$ and $\mathrm{Ru}(3)$. Again the presence of $\mathrm{Ru}-\mathrm{Ru}$ single bonds completes the closed-shell configuration about each Ru atom. This coordination mode of the dppm. fragment is similar to that observed for several organic molecules coordinated to a $\mathrm{M}_{3}(\mathrm{CO})_{9} \mathrm{H}$ core $(\mathrm{M}=\mathrm{Ru}$, Os). ${ }^{19}$

Figure 1. Perspective view of the complex $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$ $\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$) (2). Here and in Figures 2 and 3, vibrational ellipsoids are given at the 50% probability level.

Figure 2. Perspective view of the complex $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)(3)$.

Figure 3. Perspective view of the complex $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\overline{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)}\right.$ $\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$) (4).

Compound 4 has approximate C_{s} symmetry. Atom $R u(3)$ has two axial and two equatorial CO ligands while atoms $\mathrm{Ru}(1)$ and

[^2]Table I. Experimental Data for X-ray Studies

	compound		
	2	3	4
formula	$\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3}$	$\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{Ru}_{3}$
F_{w}, amu	861.59	863.60	889.60
a, \AA	10.689 (7)	10.593 (2)	12.022 (1)
b, \AA	11.936 (7)	13.850 (2)	15.266 (1)
c, \AA	23.281 (18)	20.720 (3)	17.225 (2)
β, deg	90.18 (8)	94.12 (1)	105.56 (1)
V, \AA^{3}	2970	3032	3045
Z	4	4	4
$\rho_{\text {obsd }}, \mathrm{g} / \mathrm{cm}^{3}\left(23^{\circ} \mathrm{C}\right)$	1.82	1.75	1.80
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	$1.927\left(-85^{\circ} \mathrm{C}\right)$	$1.892\left(-155{ }^{\circ} \mathrm{C}\right)$	$1.940\left(-155{ }^{\circ} \mathrm{C}\right)$
space group	$C_{2}{ }^{5}-P 2_{1} / C$	$C_{2 h}{ }^{5}-P 2_{1} / n$	$C_{2} h^{5}-P 2_{1} / n$
crystal shape	$\begin{aligned} & \text { 9-sided, faces }\{001\},\{011\}, \\ & \{102\},(10 \overline{2}) \end{aligned}$	$\begin{aligned} & 16 \text {-sided, faces }\{001\},\{011\}, \\ & \{101\},\{111\},\{111\} \end{aligned}$	$\begin{aligned} & 18 \text {-sided, faces }\{011\},\{101\}, \\ & \{110\},\{11 \overline{1}\},\{001\} \end{aligned}$
crystal vol, mm^{3}	0.078	0.14	0.012
$t,{ }^{\circ} \mathrm{C}$	-85^{a}	-155	-155
radiation	graphite monochromated Mo $\mathrm{K} \alpha$, $\lambda\left(\right.$ Mo K $\left.\alpha_{1}\right)=0.7093 \AA$	graphite monochromated Mo $\mathrm{K} \alpha$, $\lambda\left(\mathrm{Mo} \mathrm{K} \alpha_{1}\right)=0.7093 \AA$	graphite monochromated Mo K α, $\lambda\left(\right.$ Mo K $\left.\alpha_{1}\right)=0.7093 \AA$
linear abs coeff, cm^{-1}	16.35	15.48	15.98
transmission factor	0.60-0.67	0.43-0.66	0.68-0.75
receiving aperture, mm	4.2 high $\times 3.2$ wide	2.2 high $\times 3.7$ wide	4.3 high $\times 4.3$ wide
	32 cm from crystal	32 cm from crystal	32 cm from crystal
take-off angle, deg	4.0	2.5	2.6
scan speed, deg min ${ }^{-1}$	2.0 in 2θ	2.0 in 2θ	2.0 in 2θ
scan mode	$\theta-2 \theta$	$\theta-2 \theta$	$\theta-2 \theta$
scan range	1.0 below $\mathrm{K} \alpha_{1}$ to 0.9 above $\mathrm{K} \alpha_{2}$	1.0 below $\mathrm{K} \alpha_{1}$ to 0.9 above $\mathrm{K} \alpha_{2}$	1.0 below $\mathrm{K} \alpha_{1}$ to 0.9 above $\mathrm{K} \alpha_{2}$
background counts	10 s at each end of scan with rescan option ${ }^{b}$	10 s at each end of scan with rescan option ${ }^{b}$	10 s at each end of scan with rescan option ${ }^{b}$
2θ limit, deg	3-58	3-56	3-55
unique data used in final refinment	7725	7037	6755
unique data, $F_{0}{ }^{2}>3 \sigma\left(F_{0}{ }^{2}\right)$	7261	6817	5812
final no. of variables	381	384	400
R (on $F_{0}{ }^{2}$, all data)	3.8	3.5	3.5
R_{w} (on $F_{\mathrm{o}}{ }^{2}$, all data)	8.6	7.9	6.6
$R\left(\right.$ on F_{o} for $\left.F_{\mathrm{o}}{ }^{2}>3 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right)$	2.6	2.1	2.5
$R_{w}\left(\right.$ on F_{0} for $F_{0}{ }^{2}>3 o\left(F_{\mathrm{o}}{ }^{2}\right)$)	5.0	4.8	3.3
error in observ of unit weight, e^{2}	2.16	1.67	1.07

Table IIa. Positional Parameters for $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (2)

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	0.320513 (18)	0.012167 (16)	0.182187 (08)	C(16)	-0.05044 (25)	-0.09728 (23)	0.10834 (12)
$\mathrm{Ru}(2)$	0.423407 (18)	0.204305 (16)	0.130230 (09)	C(21)	0.22135 (23)	-0.18180 (20)	0.07337 (11)
$\mathrm{Ru}(3)$	0.164544 (18)	0.203334 (15)	0.165285 (08)	C(22)	0.21567 (27)	-0.20431 (22)	0.01460 (13)
P(1)	0.20377 (06)	-0.04010 (05)	0.100736 (25)	C(23)	0.2374 (03)	-0.31203 (26)	-0.00568 (15)
P (2)	0.24967 (06)	0.18674 (05)	0.072884 (26)	C(24)	0.2629 (03)	-0.39773 (26)	0.03238 (17)
C(1)	0.39314 (28)	0.06832 (26)	0.25213 (12)	C(25)	0.2676 (03)	-0.37685 (25)	0.09084 (16)
$\mathrm{O}(1)$	0.43301 (27)	0.09381 (26)	0.29508 (10)	C(26)	0.2459 (03)	-0.269 01 (24)	0.11096 (13)
C(2)	0.20608 (25)	-0.07628 (24)	0.22501 (11)	C(31)	0.22757 (24)	0.27980 (20)	0.01205 (10)
O(2)	0.13745 (23)	-0.12913 (21)	0.25095 (10)	C(32)	0.11343 (25)	0.32929 (23)	0.00003 (11)
C(3)	0.44950 (24)	-0.095 22 (22)	0.16877 (11)	C(33)	0.0991 (03)	0.39387 (24)	-0.049 13 (13)
$\mathrm{O}(3)$	0.52483 (21)	-0.15967 (20)	0.15966 (11)	C(34)	0.1983 (03)	0.40795 (24)	-0.08625 (12)
C(4)	0.54533 (27)	0.22010 (26)	0.19227 (14)	C(35)	0.3114 (03)	0.35924 (24)	-0.074 78 (12)
$\mathrm{O}(4)$	0.62186 (23)	0.23272 (25)	0.22502 (11)	C(36)	0.32706 (28)	0.29517 (22)	-0.02571 (12)
C(5)	0.51099 (23)	0.09866 (23)	0.08709 (11)	H(1)C	0.295	0.030	0.016
$\mathrm{O}(5)$	0.56245 (20)	0.03662 (20)	0.05848 (09)	$\mathrm{H}(2) \mathrm{C}$	0.152	0.052	0.015
C(6)	0.47335 (26)	0.34355 (24)	0.09502 (13)	H(13)	-0.128	0.175	0.179
O (6)	0.50771 (24)	0.42287 (20)	0.07390 (12)	H(14)	-0.282	0.041	0.165
C(7)	0.28200 (27)	0.31434 (24)	0.19699 (13)	H(15)	-0.236	-0.131	0.118
O(7)	0.31761 (23)	0.38705 (21)	0.22399 (11)	H(16)	-0.029	-0.167	0.091
$\mathrm{C}(8)$	0.11190 (26)	0.16709 (24)	0.24249 (12)	H(22)	0.196	-0.145	-0.012
$\mathrm{O}(8)$	0.07315 (24)	0.14654 (23)	0.28684 (09)	H(23)	0.237	-0.327	-0.046
C(9)	0.05197 (28)	0.32295 (23)	0.14623 (12)	H(24)	0.278	-0.472	0.018
$\mathrm{O}(9)$	-0.01344 (27)	0.39256 (22)	0.13491 (11)	H(25)	0.284	-0.437	0.117
C	0.22474 (22)	0.05102 (20)	0.03905 (10)	H(26)	0.247	-0.255	0.151
C(11)	0.04165 (22)	-0.01698(20)	0.11825 (10)	H(32)	0.044	0.319	0.026
$\mathrm{C}(12)$	0.01728 (22)	0.08623 (20)	0.14463 (10)	H(33)	0.021	0.430	-0.057
C(13)	-0.10677 (25)	0.10504 (24)	0.16059 (12)	H(34)	0.187	0.452	-0.121
C(14)	-0.19946 (25)	0.02590 (28)	0.15187 (14)	H(35)	0.379	0.370	-0.101
C(15)	-0.17237 (26)	-0.07678 (27)	0.12558 (15)	$\mathrm{H}(36)$	0.407	0.261	-0.017

Table III. Positional Parameters for $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$ (3)

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	0.507164 (15)	0.419502 (12)	-0.133128 (08)	C(14)	1.01153 (22)	0.22575 (18)	-0.05567 (13)
$\mathrm{Ru}(2)$	0.364321 (15)	0.375070 (12)	-0.253536 (08)	C(15)	0.96771 (21)	0.31072 (18)	-0.08501 (13)
$\mathrm{Ru}(3)$	0.615688 (16)	0.437505 (12)	-0.263 042 (08)	C(16)	0.83895 (21)	0.32254 (16)	-0.102 40 (11)
$\mathrm{P}(1)$	0.58778 (05)	0.25933 (04)	-0.121080 (25)	C(21)	0.50474 (20)	0.18992 (15)	-0.062 50 (11)
$\mathrm{P}(2)$	0.54046 (05)	0.27932 (04)	-0.261867 (25)	C(22)	0.53338 (23)	0.20871 (18)	0.00317 (12)
C(1)	0.44661 (22)	0.55091 (17)	-0.14406 (11)	C(23)	0.46651 (27)	0.16365 (20)	0.04978 (12)
$\mathrm{O}(1)$	0.41315 (19)	0.62884 (12)	-0.14566 (10)	C(24)	0.36990 (28)	0.09946 (20)	0.03132 (15)
C(2)	0.60372 (20)	0.44768 (15)	-0.05368 (10)	C(25)	0.34003 (28)	0.08056 (19)	-0.03370 (16)
$\mathrm{O}(2)$	0.65485 (16)	0.46192 (13)	-0.004 32 (08)	C(26)	0.40731 (25)	0.12570 (18)	-0.080 56 (13)
C(3)	0.35331 (21)	0.38033 (15)	-0.09858 (11)	C(31)	0.56020 (20)	0.20397 (15)	-0.33257 (10)
$\mathrm{O}(3)$	0.26435 (16)	0.35887 (13)	-0.074 11 (09)	$\mathrm{C}(32)$	0.67732 (21)	0.19965 (17)	-0.359 34 (11)
C(4)	0.26920 (23)	0.49438 (16)	-0.25102 (11)	C(33)	0.69410 (23)	0.13987 (18)	-0.41213 (12)
$\mathrm{O}(4)$	0.20759 (20)	0.56118 (13)	-0.25419 (11)	C(34)	0.59445 (28)	0.08418 (19)	-0.43776 (12)
C(5)	0.24163 (21)	0.29072 (17)	-0.21985 (12)	C(35)	0.47767 (28)	0.08846 (19)	-0.41169 (14)
O (5)	0.16971 (18)	0.23998 (15)	-0.20023 (10)	C(36)	0.45968 (23)	0.14871 (18)	-0.359 25 (11)
C(6)	0.31059 (23)	0.35658 (18)	-0.34174 (12)	H(12)	0.741	0.111	-0.057
$\mathrm{O}(6)$	0.27636 (20)	0.34657 (16)	-0.39468(09)	H(13)	0.956	0.094	-0.025
C(7)	0.59545 (22)	0.57766 (17)	-0.26209 (11)	H(14)	1.099	0.218	-0.042
$\mathrm{O}(7)$	0.58750 (18)	0.65899 (12)	-0.26294 (09)	H(15)	1.026	0.361	-0.094
C(8)	0.79763 (24)	0.42731 (17)	-0.26048 (12)	H(16)	0.809	0.381	-0.121
$\mathrm{O}(8)$	0.90483 (19)	0.42146 (16)	-0.26253 (12)	H(22)	0.599	0.253	0.016
C(9)	0.58842 (24)	0.43278 (16)	-0.354 24 (12)	H(23)	0.487	0.177	0.094
$\mathrm{O}(9)$	0.57468 (21)	0.42949 (14)	-0.408 97 (09)	H(24)	0.324	0.068	0.063
C(10)	0.58116 (21)	0.19203 (16)	-0.19680 (10)	$\mathrm{H}(25)$	0.273	0.037	-0.047
HYD	0.646 (03)	0.4499 (24)	-0.175 5 (16)	H(26)	0.387	0.113	-0.125
$\mathrm{H}(1) \mathrm{C}$	0.662	0.163	-0.203	H(32)	0.746	0.238	-0.341
$\mathrm{H}(2) \mathrm{C}$	0.519	0.143	-0.197	H(33)	0.774	0.137	-0.430
C(11)	0.75410 (20)	0.24878 (15)	-0.09211 (10)	H(34)	0.606	0.042	-0.473
C(12)	0.79851 (21)	0.16278 (17)	-0.06368 (11)	H(35)	0.410	0.050	-0.430
C(13)	0.92703 (24)	0.15210 (18)	-0.04490 (12)	H(36)	0.379	0.152	-0.342

Table IVa. Positional Parameters for $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (4)

atom	x	y	z	atom	x	y	z
$\mathrm{Ru}(1)$	0.496336 (17)	0.113088 (13)	0.345263 (12)	C(15)	0.59351 (24)	-0.21191 (17)	0.25331 (17)
$\mathrm{Ru}(2)$	0.484334 (18)	0.151927 (13)	0.179378 (12)	C(16)	0.61798 (23)	-0.14668 (17)	0.31190 (16)
$\mathrm{Ru}(3)$	0.305285 (18)	0.208033 (14)	0.247695 (13)	C(21)	0.76458 (22)	0.00303 (17)	0.44998 (15)
P(1)	0.66481 (06)	0.03500 (04)	0.35450 (04)	C(22)	0.76089 (23)	0.04860 (19)	0.51904 (16)
$\mathrm{P}(2)$	0.65486 (06)	0.07404 (04)	0.19398 (04)	C(23)	0.83623 (25)	0.02615 (21)	0.59268 (16)
C(1)	0.58373 (23)	0.21931 (17)	0.37857 (15)	C(24)	0.91362 (26)	-0.041 64 (22)	0.59782 (18)
$\mathrm{O}(1)$	0.64090 (19)	0.27821 (13)	0.40443 (12)	C(25)	0.91880 (27)	-0.08618(22)	0.52854 (18)
C(2)	0.46491 (23)	0.10574 (17)	0.44739 (16)	C(26)	0.84422 (25)	-0.06385 (19)	0.45445 (17)
$\mathrm{O}(2)$	0.44634 (18)	0.10177 (14)	0.50873 (12)	C(31)	0.74780 (23)	0.08596 (18)	0.12680 (15)
C(3)	0.40993 (23)	0.00637 (18)	0.31148 (16)	C(32)	0.83377 (26)	0.02481 (20)	0.12615 (17)
$\mathrm{O}(3)$	0.36597 (17)	-0.060 15 (13)	0.29749 (13)	C(33)	0.91037 (27)	0.04009 (22)	0.08013 (19)
C(4)	0.56982 (23)	0.25774 (18)	0.21393 (15)	C(34)	0.90245 (28)	0.11630 (22)	0.03549 (18)
$\mathrm{O}(4)$	0.62301 (18)	0.32106 (13)	0.22742 (12)	C(35)	0.81761 (27)	0.17757 (20)	0.03591 (17)
C(5)	0.39532 (26)	0.04585 (19)	0.14399 (17)	C(36)	0.73887 (25)	0.16146 (19)	0.08063 (16)
$\mathrm{O}(5)$	0.34722 (21)	-0.01629 (15)	0.11801 (14)	H(1) C	0.763	0.151	0.310
C(6)	0.43564 (24)	0.19932 (18)	0.07428 (17)	H(2)C	0.825	0.063	0.303
O (6)	0.40692 (20)	0.23120 (15)	0.01178 (12)	$\mathrm{H}(1) \mathrm{C}(13)$	0.611	-0.095	0.097
C(7)	0.39714 (25)	0.31272 (19)	0.28195 (18)	$\mathrm{H}(1) \mathrm{C}(14)$	0.575	-0.238	0.135
$\mathrm{O}(7)$	0.44166 (19)	0.37763 (14)	0.30165 (15)	$\mathrm{H}(1) \mathrm{C}(15)$	0.577	-0.270	0.267
C(8)	0.21804 (25)	0.23299 (22)	0.32292 (18)	$\mathrm{H}(1) \mathrm{C}(16)$	0.619	-0.159	0.367
$\mathrm{O}(8)$	0.16472 (20)	0.24838 (21)	0.36618 (14)	$\mathrm{H}(1) \mathrm{C}(22)$	0.705	0.095	0.515
C(9)	0.21005 (25)	0.25691 (18)	0.14985 (17)	$\mathrm{H}(1) \mathrm{C}(23)$	0.834	0.058	0.640
O (9)	0.15011 (19)	0.28071 (14)	0.09089 (13)	$\mathrm{H}(1) \mathrm{C}(24)$	0.964	-0.058	0.650
C(10)	0.22506 (26)	0.09833 (21)	0.22033 (21)	$\mathrm{H}(1) \mathrm{C}(25)$	0.974	-0.133	0.532
$\mathrm{O}(10)$	0.16641 (21)	0.03912 (16)	0.20337 (19)	$\mathrm{H}(1) \mathrm{C}(26)$	0.848	-0.095	0.406
C	0.75142 (22)	0.09009 (17)	0.29605 (15)	$\mathrm{H}(1) \mathrm{C}(32)$	0.841	-0.028	0.158
C(11)	0.64207 (22)	-0.06238 (16)	0.29054 (15)	$\mathrm{H}(1) \mathrm{C}(33)$	0.969	-0.002	0.079
C(12)	0.63927 (22)	-0.04295 (16)	0.21018 (15)	$\mathrm{H}(1) \mathrm{C}(34)$	0.956	0.127	0.004
$\mathrm{C}(13)$	0.61366 (24)	-0.10828 (18)	0.15215 (16)	$\mathrm{H}(1) \mathrm{C}(35)$	0.813	0.231	0.006
C(14)	0.59163 (24)	-0.19285 (18)	0.17444 (16)	$\mathrm{H}(1) \mathrm{C}(36)$	0.678	0.203	0.080

$\mathrm{Ru}(2)$ each have two axial and one equatorial CO ligand. The resultant $\mathrm{Ru}_{3}(\mathrm{CO})_{10}$ fragment is bridged equatorially on the $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ edge by the bidentate phosphine ligand. Once again the presence of three $\mathrm{Ru}-\mathrm{Ru}$ single bonds completes the closedshell electron configuration about each Ru atom. The structure of this cluster closely resembles that of $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mathrm{Me}_{2} \mathrm{As}\right.$ $\left.\mathrm{C}=\mathrm{C}\left(\mathrm{AsMe}_{2}\right) \mathrm{CF}_{2} \mathrm{CF}_{2}\right),{ }^{20} \quad \mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppe}),{ }^{21} \quad$ and

[^3]$\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm}){ }^{2.2}$
Generally the metrical results for compounds 2,3 , and 4 are those expected from related complexes. ${ }^{8 g, 10,23}$ But a few results

[^4]Table VIII. Interatomic Distances (\AA) for Compounds 2,3 , and 4

	2	2	$\mathbf{2}$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.818(1)$	$2.890(1)$	$2.884(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.888(1)$	$2.820(1)$	$2.848(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.853(1)$	$3.012(1)$	$2.851(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.351(1)$	$2.384(1)$	$2.319(1)$
$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.293(1)$	$2.306(1)$	$2.324(1)$
$\mathrm{Ru}(3)-\mathrm{P}(2)$	$2.347(1)$	$2.332(1)$	
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.922(3)$	$1.938(2)$	$1.934(3)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.901(3)$	$1.915(2)$	$1.899(3)$
$\mathrm{Ru}(1)-\mathrm{C}(3)$	$1.909(3)$	$1.905(2)$	$1.936(3)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.952(3)$	$1.938(2)$	$1.921(3)$
$\mathrm{Ru}(2)-\mathrm{C}(5)$	$1.866(3)$	$1.916(2)$	$1.947(3)$
$\mathrm{Ru}(2)-\mathrm{C}(6)$	$1.929(3)$	$1.892(2)$	$1.891(3)$
$\mathrm{Ru}(3)-\mathrm{C}(7)$	$1.968(3)$	$1.953(2)$	$1.942(3)$
$\mathrm{Ru}(3)-\mathrm{C}(8)$	$1.934(3)$	$1.929(3)$	$1.911(3)$
$\mathrm{Ru}(3)-\mathrm{C}(9)$	$1.918(3)$	$1.892(2)$	$1.917(3)$
$\mathrm{Ru}(3)-\mathrm{C}(10)$			$1.927(3)$
$\mathrm{Ru}(1)-\mathrm{H}$		$1.815(32)$	
$\mathrm{Ru}(3)-\mathrm{H}$		$1.827(32)$	
$\mathrm{Ru}(3)-\mathrm{C}(12)$	$2.158(3)$		
$\mathrm{P}(1)-\mathrm{C}$	$1.816(2)$	$1.822(2)$	$1.835(3)$
$\mathrm{P}(2)-\mathrm{C}$	$1.821(2)$	$1.839(2)$	$1.845(3)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.803(2)$	$1.826(2)$	$1.827(3)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.817(2)$	$1.823(2)$	$1.823(3)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.815(3)$	$1.823(2)$	$1.820(3)$
(C-O)	$1.133(8)^{a}$	$1.136(5)$	$1.140(6)$
$(\mathrm{C}-\mathrm{C})$	$1.390(8)$	$1.391(5)$	$1.390(6)$

${ }^{a}$ Here and in Table IX the parenthetical value on a mean refers to the standard deviation of a single observation on the assumption that the values averaged are from the same population.
are worthy of comment. Based on the internal consistency among $\mathrm{C}-\mathrm{C}$ distances in the C_{6} rings, the standard deviations of the positional parameters, as deduced from the least-squares refinements, are reasonable; there is no apparent distortion of the orthometallated $\mathrm{C}_{6} \mathrm{H}_{4}$ fragment in compound 2. From the $\mathrm{Ru}-\mathrm{Ru}$ distances, it is very clear that the bridging H ligand in compound 3 brings about a considerable lengthening of the $\mathrm{Ru}-\mathrm{Ru}$ bond it bridges; in compounds $\mathbf{2}$ and $\mathbf{3}$, the $\mathrm{Ru}-\mathrm{P}$ terminal bond is longer than the average $\mathrm{Ru}-\mathrm{P}-\mathrm{Ru}$ bridging bond, and in each instance the P atom is more or less trans to a CO ligand. The $\mathrm{Ru}(2)-\mathrm{C}(5)$ bond in compound $\mathbf{2}$ is the shortest of all $\mathrm{Ru}-\mathrm{CO}$ bonds in the three structures, presumably because there is no ligand trans to the $\mathrm{C}(5)-\mathrm{O}(5)$ group save for a weakly semibridging $\mathrm{C}(7)-\mathrm{O}(7)$ group $(\mathrm{Ru}(2) \cdots \mathrm{C}(7)=2.538$ (3) \AA).

Synthetic Aspects. Thermolysis of the cluster $\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mu-$ η^{2}-dppm) (1) in refluxing cyclohexane ($80^{\circ} \mathrm{C}$) for 6 h affords the new complex $\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)$ (2) in high yield (80%). Such a reaction occurs with evolution of 1 mol of CO and 1 mol of benzene per mole of cluster. The ${ }^{31} \mathrm{P}\left\{{ }^{[} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ is consistent with the structure established by X-ray analysis. Thus, a signal observed at 2.9 ppm is assigned to a terminal P atom while a low field one, centered at 117.3 ppm , is typical for a P atom bridging a metal-metal bond. ${ }^{24}$ The ${ }^{1} \mathrm{H}$ NMR spectrum is also consistent with the structure found in the solid state. In particular, the chemical shifts characteristic of an orthometallated phenyl ring are observed. ${ }^{25}$ The $\mathrm{AB}(\mathrm{XY})$ pattern observed for the methylene protons indicates also the stereorigidity of the molecule, at least to $80^{\circ} \mathrm{C}$. The main feature of this thermolysis is the ease with which an intramolecular rearrangement of the bridging ligand occurs. Indeed the ligand is converted from a $\mu-\eta^{2}$ four-electron donor that edge bridges in 1 into a $\mu_{3}-\eta^{3}$ six-electron donor that face bridges in 2 . The mechanism of this transformation has not been established, but we believe that the following pathway is reasonable. Thermolysis of 1 results in the loss of 1 mol of CO from the Ru atom having no P atom attached; the resulting vacant site may be removed by orthometallation of a phenyl ring to afford an intermediate $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right)\right]\left(\left[2^{\prime}\right]\right)$,
(24) Petersen, J. L.; Stewart, R. P., Jr. Inorg. Chem. 1980, 19, 186-191.
(25) Bruce, M. I.; Shaw, G.; Stone, F. G. A. J. Chem. Soc. Dalton Trans. 1972, 2094-2099.

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)(3)$ in toluene $-d_{8}(270 \mathrm{MHz})$.
closely akin to known triosmium clusters involving triphenylphosphine ${ }^{26}$ or dppm^{27} ligands. The last step in the transformation

in $\mathbf{2}$ then involves oxidative cleavage of a $\mathrm{P}-\mathrm{C}$ bond and reductive elimination of benzene via H transfer.

When a cyclohexane solution of complex 2 is heated at $80^{\circ} \mathrm{C}$ for 90 min in the presence of H_{2}, compound $3, \mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-$ $\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)$, is obtained in 75% yield. ${ }^{28}$ The latter can also be prepared directly from 1 in the same manner. This reaction can be viewed as a demetallation of the orthometallated phenyl ring of the $\mu_{3}-\eta^{3}$ six-electron donor ligand in 2 to provide the $\mu_{3}-\eta^{2}$ five-electron donor capping ligand in 3 . The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{!} \mathrm{H}\right\}$ NMR spectra show 3 to exist as a mixture of two

[^5]Table IX. Bond Angles (deg) for Compounds 2, 3, and 4

	2	3	4		2	3	4
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	61.22 (1)	57.04 (1)	59.54 (1)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	123.06 (8)	157.22 (7)	162.38 (9)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	94.40 (2)	93.08 (1)	89.11 (2)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	122.19 (9)	88.97 (8)	95.35 (8)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	85.57 (10)	87.17 (7)	90.02 (8)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{P}(2)$	50.69 (2)	52.13 (1)	
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{C}(2)$	158.42 (8)	179.16 (6)	163.84 (8)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(12)$	129.69 (6)		
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{H}$		91 (1)		$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(10)$			91.24 (10)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	78.02 (2)	90.79 (1)	148.49 (2)	$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{H}$		93 (1)	
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(1)$	94.14 (9)	87.83 (7)	92.08 (8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(8)$	89.38 (12)	100.52 (10)	90.04 (13)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(2)$	98.04 (8)	122.47 (6)	104.31 (8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(9)$	89.12 (13)	92.03 (10)	95.95 (12)
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{C}(3)$	159.50 (8)	138.67 (7)	88.18 (8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{P}(2)$	98.74 (9)	153.60 (7)	
$\mathrm{Ru}(3)-\mathrm{Ru}(1)-\mathrm{H}$		34 (1)		$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(12)$	169.68 (10)		
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	170.98 (9)	178.18 (7)	90.90 (8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(10)$			174.84 (12)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	86.27 (9)	86.24 (6)	107.05 (8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{H}$		85 (1)	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	94.11 (8)	90.30 (7)	88.65 (8)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(9)$	101.38 (11)	96.06 (11)	102.21 (12)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{H}$		88 (1)		$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{P}(2)$	161.40 (9)	105.81 (7)	
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	90.47 (13)	93.49 (9)	90.11 (11)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(12)$	81.26 (11)		
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	94.75 (12)	91.52 (9)	179.48 (11)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(10)$			90.54 (15)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{H}$		90 (1)		$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{H}$		83 (1)	
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	100.33 (11)	98.83 (9)	90.27 (11)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{P}(2)$	95.48 (8)	87.14 (7)	
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{H}$		88 (1)		$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{C}(12)$	88.51 (11)		
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{H}$		173 (1)		$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{C}(10)$			88.94 (13)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	59.98 (1)	63.67 (1)	59.66 (1)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{H}$		176 (1)	
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{P}(2)$	81.90 (2)	79.09 (1)	88.81 (2)	$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{C}(12)$	91.48 (6)		
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	91.23 (10)	92.07 (7)	89.17 (8)	$\mathrm{P}(2)-\mathrm{Ru}(3)-\mathrm{H}$		97 (1)	
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$	83.01 (8)	98.17 (7)	90.94 (8)	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	106.57 (8)	116.03 (7)	112.98 (8)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{C}(6)$	172.93 (8)	164.86 (8)	161.40 (9)	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	118.33 (9)	111.97 (7)	123.42 (9)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{P}(2)$	52.35 (2)	52.98 (1)	148.38 (2)	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}$	114.36 (8)	113.24 (7)	109.90 (9)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(4)$	115.44 (9)	103.64 (7)	91.14 (8)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	108.80 (11)	103.84 (10)	106.38 (12)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(5)$	129.23 (8)	151.76 (7)	88.09 (9)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}$	102.02 (11)	102.63 (10)	93.28 (12)
$\mathrm{Ru}(3)-\mathrm{Ru}(2)-\mathrm{C}(6)$	112.97 (8)	101.19 (8)	101.91 (9)	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}$	105.49 (11)	108.23 (10)	106.55 (12)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(4)$	167.78 (9)	156.56 (7)	90.78 (8)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{Ru}(3)$	76.96 (2)	74.89 (2)	
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(5)$	91.81 (8)	104.49 (7)	90.18 (9)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	120.10 (9)	121.98 (7)	123.63 (9)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(6)$	93.22 (9)	92.22 (7)	109.69 (9)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}$	116.77 (8)	118.14 (7)	110.27 (9)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(5)$	97.39 (11)	98.20 (10)	179.04 (12)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(12)$			113.17 (9)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	92.65 (13)	91.17 (10)	88.70 (11)	$\mathrm{Ru}(3)-\mathrm{P}(2)-\mathrm{C}(31)$	127.87 (8)	118.07 (7)	
$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(6)$	102.33 (12)	96.00 (11)	90.89 (12)	$\mathrm{Ru}(3)-\mathrm{P}(2)-\mathrm{C}$	114.52 (8)	124.27 (7)	
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	58.80 (1)	59.29 (1)	60.79 (1)	$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}$	100.86 (11)	100.27 (10)	104.82 (12)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(7)$	96.60 (9)	91.38 (7)	86.38 (8)	$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}(12)$			107.50 (12)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(8)$	82.21 (8)	114.45 (7)	101.74 (9)	$\mathrm{C}(12)-\mathrm{P}(2)-\mathrm{C}$			92.78 (12)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(9)$	173.31 (9)	148.09 (8)	155.93 (8)	$\mathrm{P}(1)-\mathrm{C}-\mathrm{P}(2)$	102.07 (11)	106.70 (11)	99.05 (12)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{P}(2)$	80.26 (2)	76.13 (1)		$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	114.45 (18)	119.68 (16)	112.45 (18)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(12)$	86.46 (6)			$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Ru}(3)$	122.04 (17)		
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{C}(10)$			88.49 (9)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{P}(2)$			$112.36(18)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{H}$		34 (1)		< $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ 〉	$177.2(2.1)^{a}$	176.4 (1.8)	175.5 (2.4)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	59.49 (8)	101.49 (7)	86.67 (8)	$\langle\mathrm{C}-\mathrm{C}-\mathrm{C}$ 〉	120.0 (1.5)	120.0 (0.4)	120.0 (0.4)

${ }^{a}$ Excluding $\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)=159.07(85)^{\circ}$.
isomers, $\mathbf{3 a}$ and $\mathbf{3 b}$, that differ in the position of the H bridge on the $\mathrm{R} \mathrm{u}_{3}$ triangle. At room temperature, these two isomers in-

3a

3b
terconvert rapidly on the NMR time scale (Figure 4). At 253 K , the two isomers are observed in a $8: 1$ ratio. In the solid state only isomer 3 a is observed. The ${ }^{1} \mathrm{H}$ NMR spectrum of 3 at different temperatures is displayed in Figure 4. The signals at 3.74 and 4.77 ppm we attribute to the methylene group in isomers $\mathbf{3 a}$ and $\mathbf{3 b}$, respectively. A hydride bridge on one of the two initially equivalent $\mathrm{Ru}-\mathrm{Ru}$ bonds ($\mathrm{Ru}(1)-\mathrm{Ru}(2)$ or $\mathrm{Ru}(1)-\mathrm{Ru}$ (3) of Figure 2) induces a magnetic inequivalence of the proton nuclei within the CH_{2} group. The complex signal at 3.74 ppm is the $A B$ part of an $A B X Y$ system (where X and Y are two inequivalent P atoms). On the other hand, the proton nuclei within the CH_{2} group for isomer 3b, where the H bridge is on the $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ bond, are magnetically equivalent. The doublet of doublets at 4.77 ppm is the \mathbf{A}_{2} part of an $\mathbf{A}_{2} X Y$ system. The two signals observed at -16.72 and -16.07 ppm are attributed to the $\mu-\mathrm{H}$ ligands within isomers 3a and 3b, respectively. They both appear
as a doublet of doublets since in each case they are coupled to two inequivalent \mathbf{P} atoms.

In refluxing cyclohexane, 2 reacts with CO at atmospheric pressure to give the new cluster compound $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{P}-\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$) (4) in 80% yield (based on 2 consumed). In the presence of CO , the tridentate $\mu_{3}-\eta^{3}$ six-electron donor ligand in 2 undergoes an intramolecular reductive elimination to afford the $\mu-\eta^{2}$ four-electron donor ligand in 4. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 show that the structure in solution fits the one determined for the solid state (Figure 3). Indeed the chemical shifts for the P nuclei at 28.8 ppm are consistent with terminal P atoms, for instance, in $R u_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}\right.$-dppm); ${ }^{13}$ the CH_{2} protons appear as the AB part of an ABX_{2} pattern centered at 3.45 ppm , consistent with the approximate C_{s} symmetry of the molecule.

Scheme I shows in addition that (i) $\mathbf{4}$ can give back 2 upon thermolysis and (ii) 4 can be converted into 3 by reaction with molecular hydrogen. The thermolysis reaction giving 2 from 4 could result from a loss of a CO ligand from the unique Ru atom followed by an oxidative addition of a $\mathrm{P}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ bond. The observed transformation of 4 into 3 could proceed via formation of 2 as the intermediate species, as 2 has been shown to give $\mathbf{3}$ by reaction with H_{2}.

Discussion

Although the dppm ligand, because of its stability, is widely used as a ligand in the chemistry of dinuclear complexes, ${ }^{29}$ the

Scheme II

reactions described above show that it undergoes facile reactions on a $R u_{3}$ cluster. Nevertheless, the dppm fragments thus formed have played their role in the stabilization of the Ru_{3} triangle as it has been retained throughout all reactions investigated. For example, $\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}\right.$-dppm) (1) reacts with H_{2} to give the $\mathrm{Ru}_{3} \mathrm{H}$ cluster $\mathrm{Ru}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{H})\left(\mu_{3}-\eta^{2}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)(3),{ }^{28}$ whereas the $R u_{3}$ cluster is not maintained in the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with $\mathrm{H}_{2}{ }^{30}$ Compound 3 exhibits remarkable stability as no change is observed when it is heated at $80^{\circ} \mathrm{C}$ for 18 h under a pressure of 40 bar of $C O$. But the mobility of the hydrido ligand in 3 may be important in hydrogenation reactions.

The reaction of $2, \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\eta^{3}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}-\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$), with CO to afford $4, \mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{P}-\right.$
(29) Balch, A. L. In "Reactivity of Metal-Metal Bonds"; Chisholm, M. H., Ed.; American Chemical Society: Washington DC, 1981; ACS Symp. Ser. No. 155, pp 167-195.
(30) Knox, S. A. R.; Koepke, J. W.; Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc. 1975, 97, 3942-3947.
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$), is reversible. These reactions proceed through intramolecular reductive elimination or oxidative addition of the dppm fragment (Scheme II) that could give rise to an intermediate in which atom $\mathrm{Ru}(3)$ (Figures 1 and 3) is coordinatively unsaturated. Thus the activation of two-electron donor ligands other than CO in stoichiometric or catalytic carbonylation reactions might be possible.

Finally, the reaction $\mathbf{1 \rightarrow 2 \rightarrow 4}$ can be viewed as the "synthesis" of a new bidentate phosphine ligand, $(\mathrm { C } _ { 6 } \mathrm { H } _ { 5 }) \longdiv { \mathrm { PCH } _ { 2 } \mathrm { P } (\mathrm { C } _ { 6 } \mathrm { H } _ { 5 }) }$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, on a Ru_{3} core, starting from the well-known dppm ligand. The three Ru atoms take part in this process, which demonstrates a cooperative interaction of the metal centers in a cluster to transform an organic substrate.

Acknowledgment. This research was supported by the CNRS (ATP "Chimie fine" to J.J.B.), by the NSF (Grant CHE-83-08076 to J A.I.), and by the NSF/CNRS U.S.-France program (Grant INT-82-12376 to J.A.I.). We thank the Ministère des Relations Extërieures and the Mission Scientifique de l'Ambassade de France in Washington, DC, for enabling Lugan to work in Evanston.

Registry No. 1, 64364-79-0; 2, 96502-43-1; 3a, 95402-64-5; 3b, 95402-64-5; 4, 96482-75-6.

Supplementary Material Available: Tables IIb, IIIb, and IVb, anisotropic thermal parameters for compounds 2, 3, and 4, respectively, and Tables V, VI, and VII, structure amplitudes ($\times 10$) for compounds 2, 3, and 4, respectively (a negative entry for $\left|F_{0}\right|$ in these latter tables indicates that $F_{0}^{2}<0$) (92 pages). Ordering information can be obtained from any current masthead page.

Cyclopropeniumyldiazonium Systems: First Generation of a C-sp-Attached Diazonium Function

Robert Weiss,* Klaus-Georg Wagner, Claus Priesner, and Jürgen Macheleid
Contribution from the Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, D-8520 Erlangen, Federal Republic of Germany. Received August 20, 1984

Abstract

Synthesis of stable cyclopropeniumyldiazonium salts via several independent pathways is reported. These systems represent the first authentic examples of a diazonium function attached to sp-hybridized carbon. Novel reaction types of these systems include (a) reversible protonation, (b) irreversible hydrolysis, and (c) thermal dediazoniation. Experimental results are rationalized on the basis of MNDO model calculations.

I. Introduction

Despite the high standard of the contemporary synthetic art, not all important functional groups have been attached to carbon via all three main types of C -hybridization. A case in point is the diazonium function which hitherto has only been observed in conjunction with sp^{3} or sp^{2} orbitals of carbon. ${ }^{1}$ Alkynyldiazonium salts, A, are the most obvious-though not exclusive (viz. be-low)-target molecules containing a C_{sp}-attached diazonium function. However, the attempt to synthesize such salts meets with tremendous difficulties. In a classical sense, for the synthesis of \mathbf{A}, the existence of primary ynamines would be a prerequisite. These, however, are inaccessible as they are prototropic forms of much more stable nitriles. Other potential precursors (including alkynyl isocyanates ${ }^{2 a}$ and thionylimines ${ }^{2 b}$) would only be accessible

[^6]via the corresponding amines. There is one isolated report in the literature ${ }^{3}$ which is directly concerned with synthesis and reactivity of a salt $\mathrm{A}\left(\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{~A}^{-}=\mathrm{NO}_{3}{ }^{-}\right)$. The authors claim to have generated this system by reacting the corresponding nitrosoalkyne with NO, thus making use of a very old aprotic diazotization technique. ${ }^{4}$ The diazonium salt itself was never directly observed but the authors report its successful trapping via diazo coupling. However, these results have been called in doubt very recently by M. Hanack et al. ${ }^{5}$ whose various verification attempts met with total failure. This latter group has approached the synthesis of salts A via dehydrohalogenation reactions of a suitable vinyldiazonium precursor. ${ }^{6}$ By working under carefully controlled conditions at low temperature, they were able to collect circumstantial evidence for the intermediacy of $\mathrm{A}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{A}^{-}=\right.$ $\mathrm{SbCl}_{5} \mathrm{OTs}^{-}$) by way of various nucleophilic trapping reactions.
(3) Tedder, J. M.; Robson, E. Angew. Chem. 1963, 75, 1033.
(4) Bamberger, E. Ber. 1918, 5l, 634.
(5) Hanack, M.; Helwig, R. Chem. Ber., in press.
(6) We are grateful to Prof. Hanack for making a preprint of ref 5 available to us.

[^0]: (8) See for example: (a) Richter, F.; Vahrenkamp, H. Organometallics 1982, $l, 756$-757. (b) Vahrenkamp, H.; Wolters, D. Organometallics 1982, l, 874-875. (c) Adams, R. D.; Katahira, D. A. Organometallics 1982, l, 53-59. (d) Maclaughlin, S. A.; Carty, A. J.; Taylor, N. J. Can. J. Chem. 1982, 60, 87-90. (e) Carty, A. J. Adv. Chem. 1982, 196, 163-193. (f) Harley, A. D.; Guskey, G. J.; Geoffroy, G. L. Organometallics 1983, 2, 53-59. (g) Rosen, R. P.; Geoffroy, G. L.; Bueno, C.; Churchill, M. R.; Ortega, R. B. J. Organomet. Chem. 1983, 254, 89-103. (h) Richmond, M. G.; Absi-Halbi, M.; Pittman, C. U., Jr. J. Mol. Catal. 1984, 22, 367-371.

[^1]: (13) At about $-105^{\circ} \mathrm{C}$, the material was found to undergo a nondestructive phase transformation to the triclinic system.
 (14) Corfield, P. W. R.; Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 197-204.
 (15) (a) Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 204-210. (b) Jameson, G. B.; Ibers, J. A. J. Am. Chem. Soc. 1980, 102, 2823-2831.
 (16) Cromer, D. T.; Waber, J. T. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A and 2.3.1. For hydrogen atoms see: Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175-3187.
 (17) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781-782.
 (18) See paragraph at end of paper regarding supplementary material.

[^2]: (19) (a) Jeannin, S.; Jeannin, Y.; Lavigne, G. Inorg. Chem. 1978, 17, 2103-2110. (b) Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R.; Taylor, M. J.J. Chem. Soc., Chem. Commun. 1982, 314-319. (c) Adams, R. D.; Dawoodi, Z.; Foust, D. F.; Segmüller, B. E. Organometallics 1983, 2, 315-323. (d) Ehrenreich, W.; Herberhold, M.; Suss-Fink, G. J. Organomet. Chem. 1983, 248, 171-188.

[^3]: (20) Roberts, P. J.; Trotter, J. J. Chem. Soc. A 1971, 1479-1482.

[^4]: (21) Bruce, M. I.; Hambley, T. W.; Nicholson, B. K.; Snow, M. R. J. Organomet. Chem. 1982, 235, 83-91.
 (22) Coleman, A. W.; Jones, D. F.; Dixneuf, P. H. Brisson, C.; Bonnet, J.-J.; Lavigne, G. Inorg. Chem. 1984, 23, 952-956.
 (23) (a) Churchill, M. R.; Hollander, F. J.; Hutchinson, J. P. Inorg. Chem. 1977, 16, 2655-2659. (b) Iwasaki, F.; Mays, M. J.; Raithby, P. R.; Taylor, P. L.; Wheatley, P. J. J. Organomet. Chem. 1981, 2l3, 185-206.

[^5]: (26) Bradford, C. W.; Nyholm, R. S. J. Chem. Soc. Dalton Trans. 1973, 529-533.
 (27) Clucas, J. A.; Foster, D. F.; Harding, M. M.; Smith, A. K. J. Chem. Soc., Chem. Commun. 1984, 949-950.
 (28) A similar observation is reported by: Bruce, M. I.; Horn, E.; Snow, M. R.; Williams, M. L. J. Organomet. Chem. 1984, 276, C53-C57.

[^6]: (1) Patai, S. "The Chemistry of Diazonium and Diazo Groups"; Wiley: New York, 1978; Part 1 and 2.
 (2) (a) Jäger, V.; Viehe, G. H. In "Houben-Weyl-Müller, Methoden der Organischen Chemie", vol. 5/2a, Thieme-Verlag, Stuttgart, 1977; pp 1-920. (b) Viehe, H. G. "Chemistry of Acetylenes"; Marcel Dekker: New York, London, 1969. Both, in (a) and (b), there is no evidence for alkynyl isocyanates and alkynyl thionylimines.

